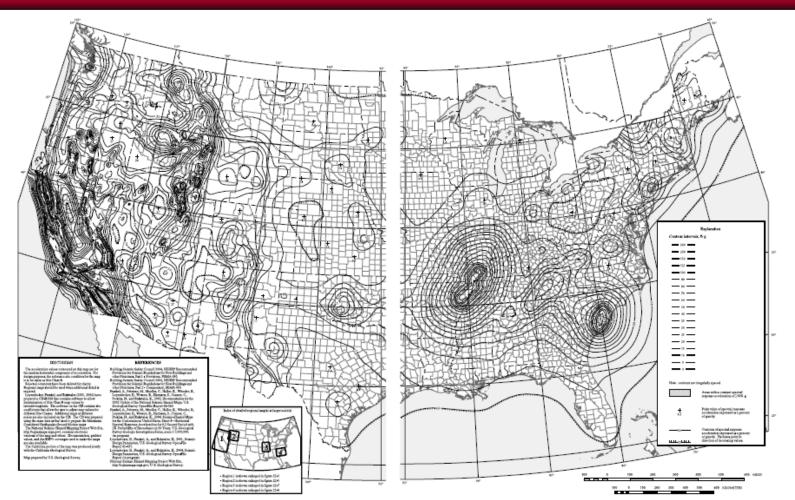
Development of Risk-Targeted Earthquake Ground Motions for use in ASCE 7

National Earthquake Hazards Reduction Program (NEHRP) Advisory Committee (ACEHR) Meeting

Nicolas Luco, Research Structural Engineer

USGS, Golden, Colorado



Acknowledgements

- USGS Hazard Mapping Project, particularly ...
 - Mark Petersen (Project Chief)
 - Steve Harmsen (Modeler)
 - Ken Rukstales (GIS)

- Eric Martinez (Web)
- Greg Smoczyk (DB)
- Sean McGowan (QA)
- FEMA-Funded BSSC Project '07
 - Charlie Kircher (Chair)
 - See seminar presentation by Kircher for member list
- ASCE 7 SSC Ad-Hoc Ground Motion Committee
 - Charlie Kircher (Chair)
 C.B. Crouse (TC1 Chair)
 - John Hooper (SSC Chair) Jim Harris (ASCE 7 MC)

New ASCE 7-10 "Design Maps"

FIGURE 22-1 RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE_R) GROUND MOTION OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION, SITE CLASS B

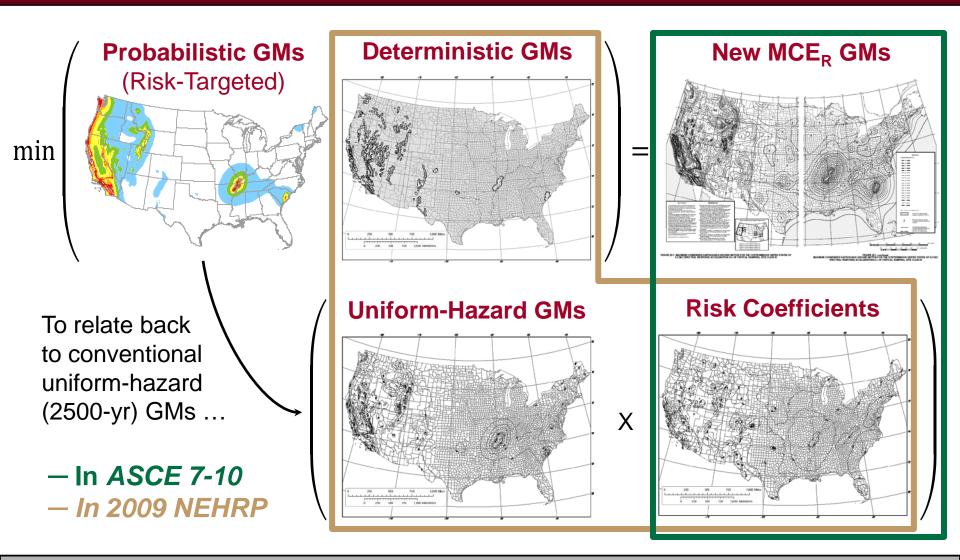
NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

cparation of Scisific D	esign Maps for Codes [DL-NGA01-NL] - \$45.00 : EERI - Windows Internet Explorer	
🕑 🗢 🙋 http://www	.eeri.org/cds_publications/catalog/product_info.php?cPath=42_43_49&products_id=314	🔽 🗟 😽 🗙 🔀 Google
avorites 🏾 🏉 Preparatio	n of Seismic Design Maps for Codes [DL-NG	🏠 👻 🗔 👻 🖃 👘 🕶 Page 👻 Safety 👻 Tools 👻 🔞
EERI Membe		e for an Available Options drop-down menu to see if there is observe the second second.
ategories	Publications etc.	
oducts For Sale	My Account Cart Contents Checkout	Preparation of Seismic Design Maps for Codes : EERI - Windows Internet Explorer
echnical Seminars-> New Information on th Sismic Performance of	Preparation of Seismic Design \$45.00	
isting Concrete isidings Next Generation tenuation Models	Maps for Codes [DL-NGA01-NL]	
Practical Applications to ep Foundations	Presented by: Nicolas Luco, Research Structural Engineer	Preparation of New Seismic
<u>ninar</u> Practical Applications t	Design Maps for Building Codes	
<u>Illow Foundations</u> ninar	Notia Lan, Annen h Bruchari Egylewn 1050, Some, Chruna M	Design Maps for Building Codes
olications-> -ROMs Ds	About this Seminar	
5	Series Click to enlarge	
wnload I Newsletter		EERI Seminar on Next Generation Attenuation Models
<u>thquake Basics Series</u> I <u>l Histories</u> Data Collection	Next Generation Attenuation (NGA) Models This seminar informs structural and geotechnical engineers about the	
thquake Spectra	implications for engineering practice of the recently developed next	Nicolas Luco, Research Structural Engineer
ut Earthquake Spectra ctra Online site	generation attenuation (NGA) models. Significant changes are coming to the USGS Hazard Maps and Seismic Design Maps that are part of the ASCE 7	meende Euros, neocuren etractarar Engineer
nplate Download lication Procedures orial Board	and IBC design process. These changes need to be understood by geotechnical, seismological, and structural engineers; not only will they	USGS, Golden, Colorado
onar board	impact site-specific studies, but they will also become a part of the 2010	
opping Cart 🛶	ASCE 7 and 2012 IBC design provisions. This seminar provides the background and basis for the NGA models and how they impact the new	
ems	USGS Hazard Maps. It also summarizes the technical basis of the three	
ecials 🗕	major changes to Seismic Design Maps. It provides examples of applications of the new NGA models.	science for a changing world
200	The NGA models that are now incorporated in the new USGS Hazard Maps	Done
	were developed by the Pacific Earthquake Engineering Research (PEER)	
	Center over a five-year period to update the ground motion predictive equations for shallow crustal earthquakes in the western United States and	
	similar active tectonic regions. The expansion of the strong motion database	
		🛛 📄 👘 Internet 🖓 🔹 🔍 100%

Google "EERI NGA Seminar Presentations" for Video or email <u>nluco@usgs.gov</u> for just PowerPoint

Outline of Presentation

- Preparation of new design maps using ...
 - Seismic hazard computed by <u>USGS</u>
 - Probabilistic hazard curves
 - Deterministic median ground motions
 - Procedures developed by Project '07
 - Stipulated in site-specific procedures (Ch. 21) of ASCE 7-10 & 2009 NEHRP Provisions
- Design maps **web application** and other associated products prepared by USGS


Preparation of New Design Maps

 Consistent with site-specific procedures (Ch. 21) of ASCE 7-10 & 2009 NEHRP ...

- Probabilistic ground motion

- Method 1: Uniform-hazard GM x Risk Coefficient
- Method 2: Risk-targeted probabilistic GM directly
- Deterministic ground motion
 - 84th-%ile GM, but not < $1.5F_a$ or $0.6F_v/T$
- $-\underline{MCE_{R} GM} = min(Prob. GM, Det. GM)$
- All GMs are max-direction spectral accel.'s
- Ground motions computed by USGS

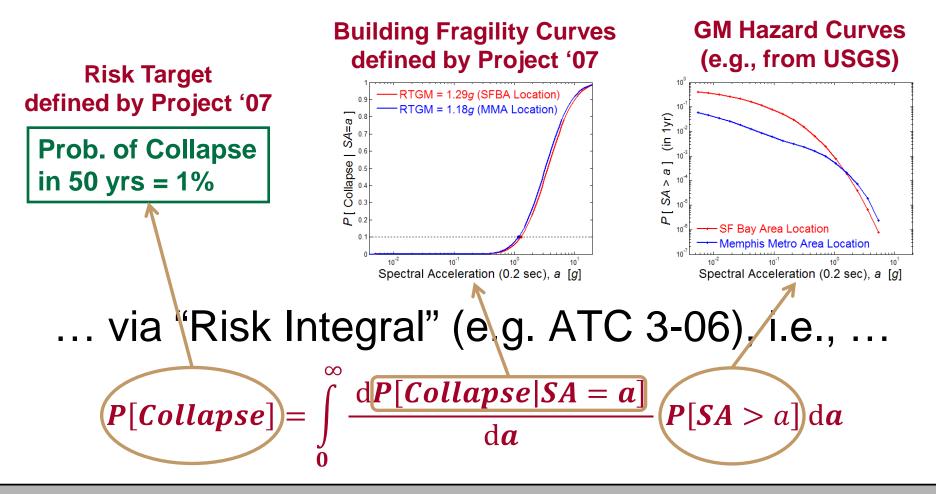
Preparation of New Design Maps

NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

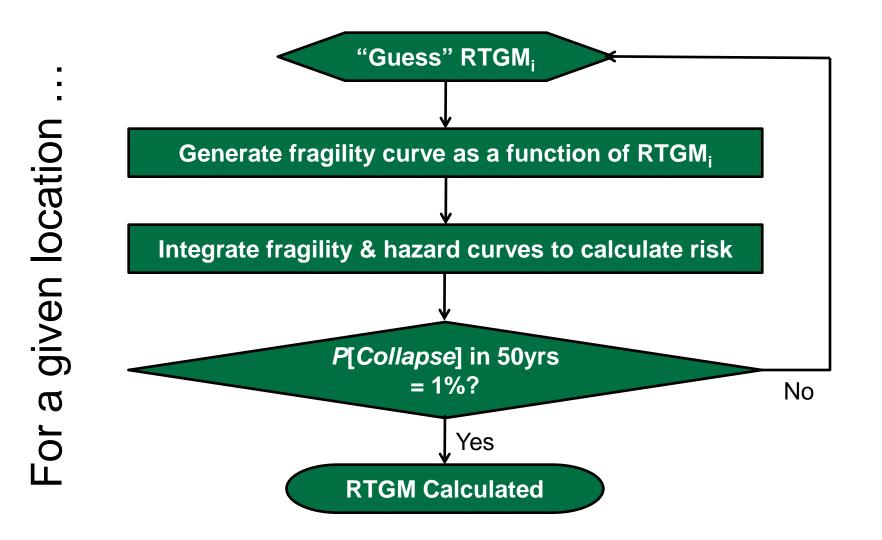
"Development of Risk-Targeted Earthquake Ground Motions for use in ASCE 7," N. Luco, USGS

Probabilistic Ground Motions

From site-specific procedures (Chapter 21) of ASCE 7-10 & 2009 NEHRP Provisions ...

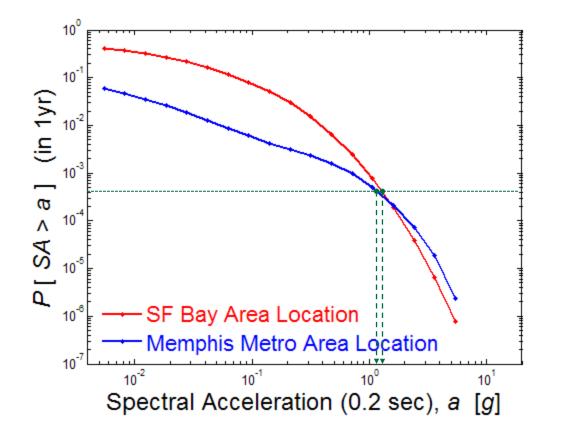

21.2.1, Probabilistic Ground Motion: The probabilistic spectral response accelerations shall be taken as the spectral response accelerations in the direction of maximum horizontal response represented by a 5 percent damped acceleration **Probabilistic Ground Motion = Risk-Targeted GM**

21.2.1.2, Method 2: At each spectral response period for which the acceleration is computed, ordinates of the probabilistic ground motion response spectrum shall be determined from iterative integration of a site-specific hazard curve with a lognormal probability density function representing the collapse fragility (i.e., probability of collapse as a function of spectral response acceleration). The ordinate of the probabilistic ground-motion response spectrum at each period shall achieve a 1 percent probability of collapse at said ordinate of the probabilistic ground-motion response spectrum and (ii) a logarithmic standard deviation values of 0.6.


NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

Risk-Targeted Ground Motions

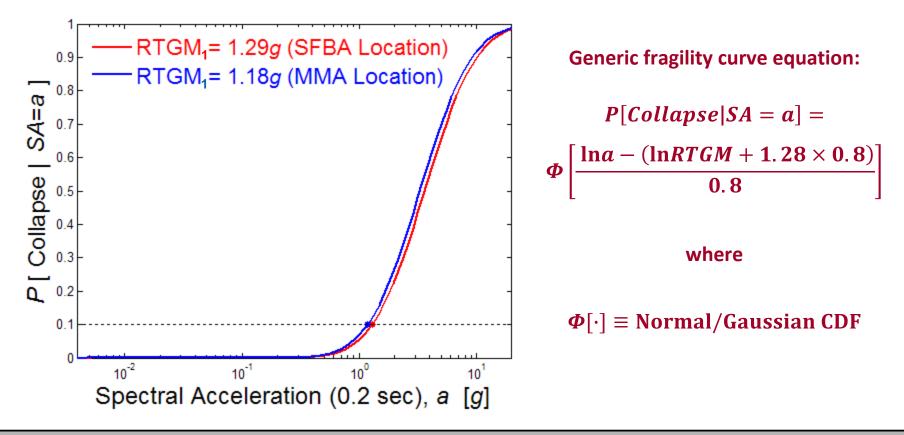
Calculated iteratively by combining ...

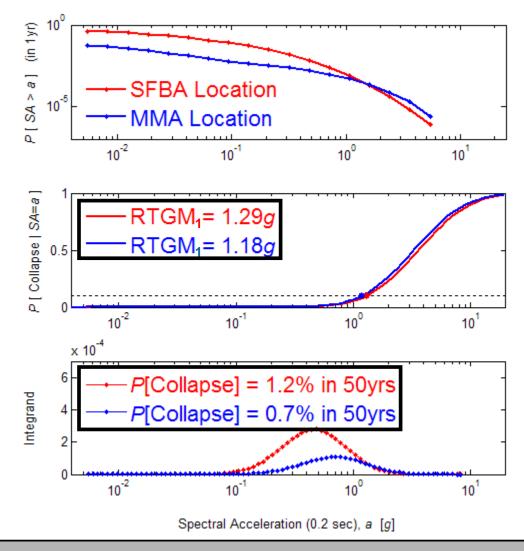

Risk-Targeted Ground Motions

NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

"Development of Risk-Targeted Earthquake Ground Motions for use in ASCE 7," N. Luco, USGS

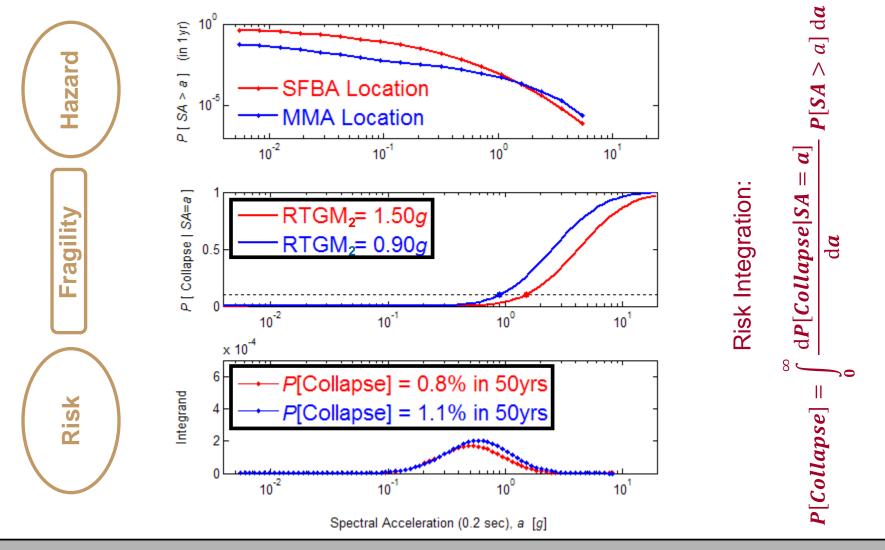
GM hazard curves from USGS ...

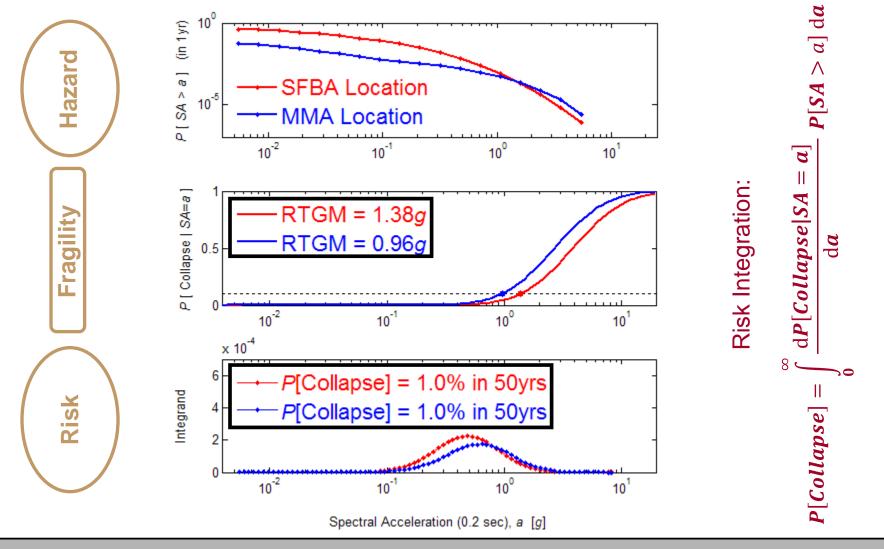



Notes:

The SA values from USGS have been factored by 1.1 for 0.2s or 1.3 for 1.0s to convert (approximately) to max direction.

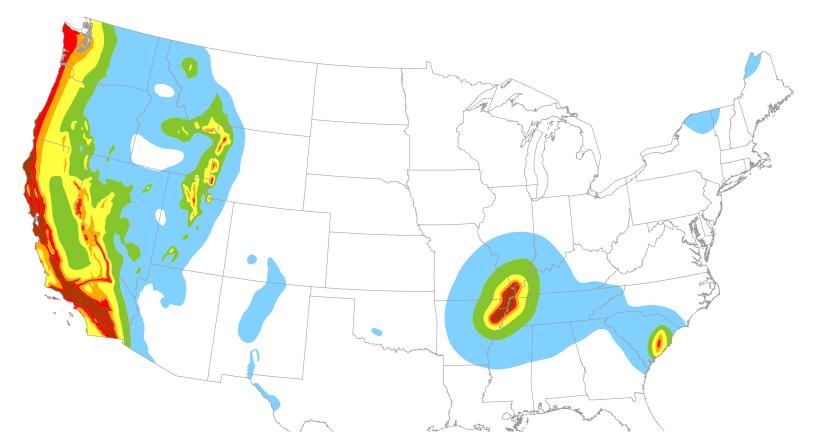
Conventional "2500-yr" GMs are interpolated from such hazard curves.


Generic fragility curves assuming, for our 1^{st} iteration, that RTGMs = 2500-yr GMs ...



NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

"Development of Risk-Targeted Earthquake Ground Motions for use in ASCE 7," N. Luco, USGS



NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

Risk-Targeted GM (RTGM) Maps

Reminder: These RTGM maps are coupled with deterministic maps to produce the MCE_R maps in ASCE 7-10

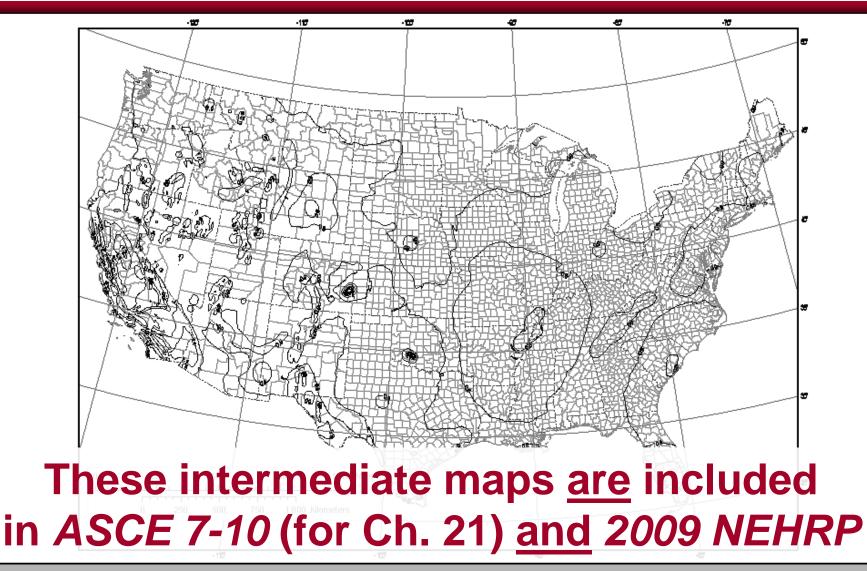
NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

Risk-Targeted Ground Motions

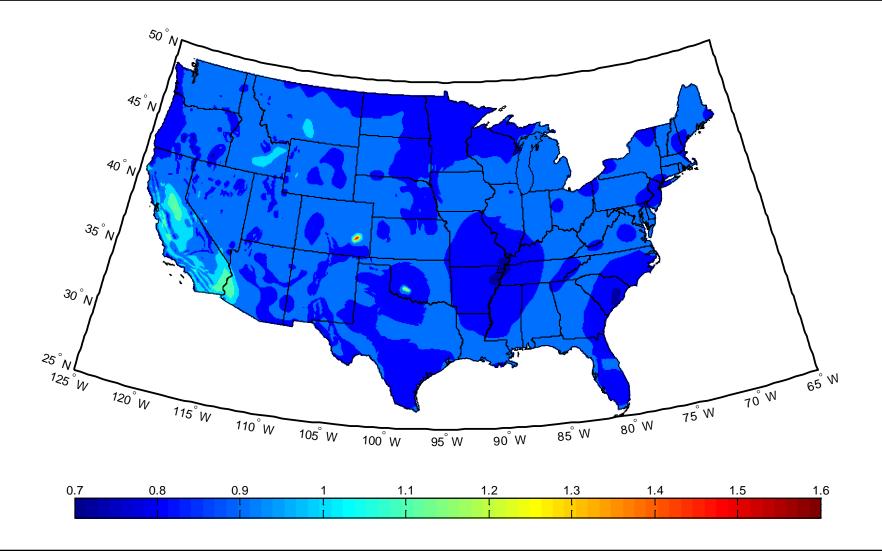
From site-specific procedures (Chapter 21) of ASCE 7-10 & 2009 NEHRP Provisions ...

21.2.1, Probabilistic Ground Motion: The probabilistic spectral response accelerations shall be taken as the spectral response accelerations in the direction of maximum horizontal response represented by a 5 percent damped acceleration **Probabilistic Ground Motion = Risk-Targeted GM**

21.2.1.1, Method 1: At each spectral response period for which the acceleration is computed, ordinates of the **Risk-Targeted GM** and the spectrum shall be determined as the product of the **Cargeted GM** and the spectral response acceleration from **Uniform-Hazard (2500-yr) GM** ectrum having a 2 percent probability of exceedance within a first coefficient, C_R , shall be determined as the determined acceleration of the risk of the spectral response acceleration from **Uniform-Hazard (2500-yr) GM** and the spectral response acceleration from **Uniform-Hazard (2500-yr) GM** ectrum having a 2 percent probability of exceedance within a first of the risk coefficient, C_R , shall be determined as the determined acceleration from Figs. 22-3 and 22-4, respectively. ...

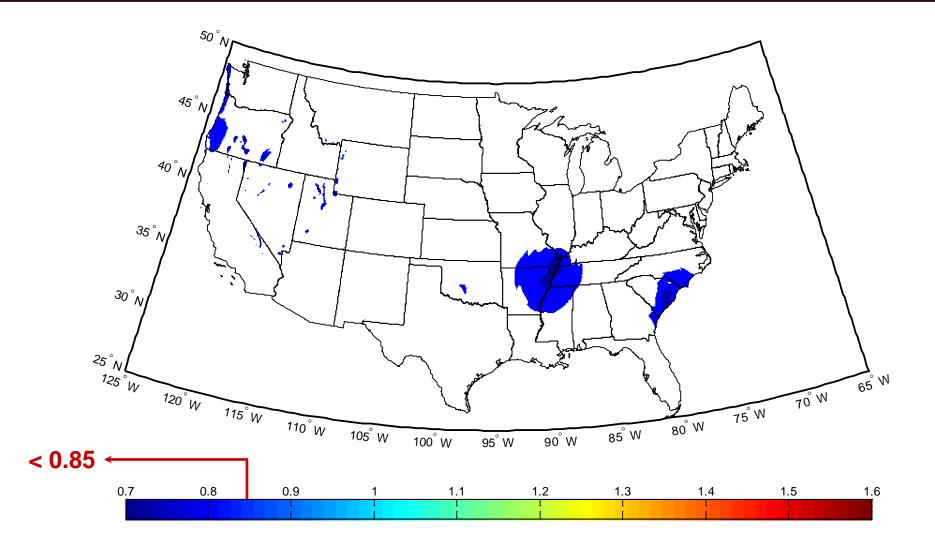

NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

Risk Coefficients (C_R's)

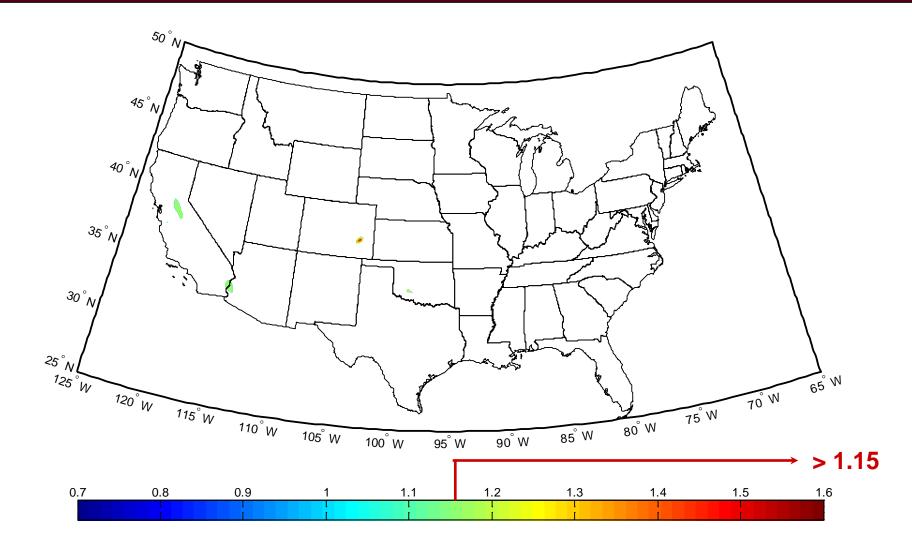

Conventional uniform-hazard (2500-yr)
 GMs interpolated from hazard curves

• C_R 's = $\frac{\text{Risk-Targeted GMs}}{\text{Uniform-Hazard GMs}}$

• e.g.,		SFBA Location	MMA Location
	Risk-Targeted GM	1.38 <i>g</i>	0.96g
	Uniform-Hazard GM	1.29 <i>g</i>	1.18g
	Risk Coefficient (C _R)	1.07	0.82



NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting


NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

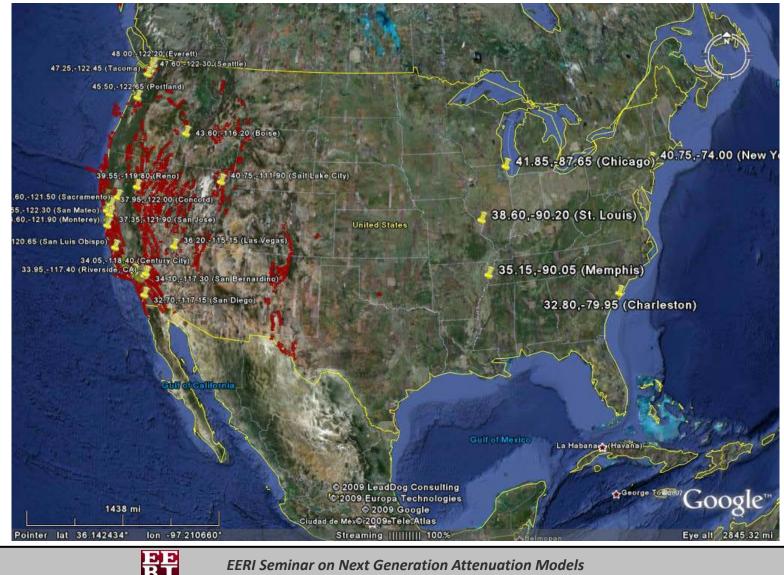
"Development of Risk-Targeted Earthquake Ground Motions for use in ASCE 7," N. Luco, USGS

NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

"Development of Risk-Targeted Earthquake Ground Motions for use in ASCE 7," N. Luco, USGS

NEHRP Advisory Committee on Earthquake Hazards Reduction (ACEHR) Meeting

Summary: Probabilistic GMs


- Probabilistic GMs = Risk-Targeted GMs
- Risk-Targeted GMs calculated from ...
 - GM hazard curves (from USGS)
 - Building fragility curves (def. by Project '07)
 - Risk target (defined by Project '07)
- Risk Coefficients = Risk-Targeted GMs Uniform-Hazard GMs
- Risk Coeff. Maps included in ASCE 7-10 for combination with site-specific UHGMs

Comparison of Seismic Design Values

- 34 City Sites in the Continental United States
 - Selection of regions most at risk:
 - High seismic regions (Nor Cal, So Cal, PNW)
 - High population areas of high/moderate/low seismic regions (Intermountain and CEUS)
 - Selection of City sites:
 - Major city of regional county or metropolitan area
 - Nearest USGS hazard grid point to center of city
- Average Regional or National values:
 - Weight seismic design value of associated county or metropolitan area population
- Assume Default Soil Type (Site Class D)

Map showing selected United States city sites (34) used to compare ground motions (WUS faults shown with red lines)

EERI Seminar on Next Generation Attenuation Models

From "Project 07 - Reassessment of Seismic Design Procedures ... for Building Codes," C. Kircher et al

September, 2009

Map showing selected Central and Eastern United states (CEUS) city sites (5) used to compare ground motions

From "Project 07 - Reassessment of Seismic Design Procedures ... for Building Codes," C. Kircher et al

September, 2009

Central and Eastern United States city sites

Location and associated county population data (and total population for all United States counties)

City and	d Location of	Site	Metropolitan Statistical Area		
Name	Name Latitude		Name	Population	
St. Louis	38.60	-90.20	St. Louis MSA (16)	2,786,728	
Memphis	35.15	-90.05	Memphis MSA (8)	1,269,108	
Charleston 32.80		-79.95	Charleston MSA (3)	603,178	
Chicago	Chicago 41.85		Chicago MSA (7)	9,505,748	
New York 40.75		-74.00	New York MSA (23)	18,747,320	
Total Pop - MO/	FN/SC/IL/NY	48,340,918	Total Pop - 57 Counties	32,912,082	
Total State Po All Regi	-	101,407,080	Total County Population All Regions	71,381,030	

Central and Eastern United States City Sites

Comparison of short-period design values (S_{DS}) and MCE parameters for Site Class D, return periods and 50-year collapse risk probabilities

CEUS City	Design	MCE (2009 NEHRP Provisions)				Return Period	50-Year Collapse	
(Site Location)	S _{DS} (g)	F _a	S _{SUH} (g)	C _{RS}	S _{SD} (g)	(years)	Prob.	
St. Louis	0.42	1.45	0.51	0.87	1.50	1,838	1.0%	
Memphis	0.74	1.10	1.24	0.81	1.50	1,680	1.0%	
Charleston	0.80	1.04	1.46	0.79	2.99	1,747	1.0%	
Chicago	0.14	1.60	0.15	0.92	1.50	2,155	1.0%	
New York	0.29	1.58	0.32	0.87	1.50	2,058	1.0%	
CEUS Average	0.29	1.54	0.34	0.88	1.53	2,047	1.0%	

PD RT

Central and Eastern United States City Sites

Comparison of short-period design ground motions (S_{DS}) with prior (ASCE 7-05) values and older Code Values (Site Class D)

City	2.75*Z	C _a	S _{DS} - ASCE 7			
(Site Location)	1994 UBC	1997 UBC	ASCE 7-98	ASCE 7-05	ASCE 7-10	
St. Louis	0.41	0.55	0.53	0.52	0.42	
Memphis	0.83	0.90	0.92	0.93	0.74	
Charleston	0.41	0.55	0.95	1.01	0.80	
Chicago	0.00	0.00	0.20	0.18	0.14	
New York	0.41	0.55	0.41	0.37	0.29	
CEUS Average	0.31	0.40	0.39	0.36	0.29	

Comparison of Short-Period Design Ground Motions

Comparison of average values of current (ASCE 7-10) and prior (ASCE 7-05) ground motions, and older Codes for each region and all 34 selected sites in the continental United States

United States	2.75*Z	C _a	S _{DS} - ASCE 7			
Region	1994 UBC	1997 UBC	7-98(7-02)	7-05	7-10	
Southern CA	1.10	1.25	1.06	1.16	1.22	(+5%)
Northern CA	1.06	1.18	1.01	1.00	1.08	(+8%)
Pacific NW	0.83	0.90	0.90	0.84	0.83	(-1%)
Intermountain	0.68	0.80	0.72	0.70	0.65	(-7%)
CEUS	0.31	0.40	0.39	0.36	0.29	(-19%
All Regions	0.69	0.80	0.72	0.73	0.72	(-1%)

EERI Seminar on Next Generation Attenuation Models

From "Project 07 - Reassessment of Seismic Design Procedures ... for Building Codes," C. Kircher et al

September, 2009

Comparison of 1-Second Design Ground Motions

Comparison of average values of current (ASCE 7-10) and prior (ASCE 7-05) ground motions, and older Codes for each region and all 34 selected sites in the continental United States

United States	1.25(1.5)Z	C _v	ę	S _{D1} - ASCE 7		
Region	1994 UBC	1997 UBC	7-98 (7-02)	7-05	7-10	
Southern CA	0.75	0.83	0.63	0.65	0.70	(+8%)
Northern CA	0.73	0.81	0.64	0.61	0.65	(+7%)
Pacific NW	0.56	0.54	0.46	0.44	0.49	(+11%)
Intermountain	0.47	0.46	0.41	0.39	0.34	(-13%)
CEUS	0.21	0.24	0.16	0.14	0.14	(0%)
All Regions	0.47	0.52	0.39	0.38	0.40	(+5%)

Summary

- Previous uniform-hazard (2%-in-50yr) probabilistic ground motions ...
 - Resulted in spatially-variable collapse risk, due to variations in hazard curve shapes
 - Considered only a single selected point (2%-in-50yr) on hazard curves
 - Were similar in value in Memphis Metro Area and San Francisco Bay Area
- New risk-targeted probabilistic ground motions address these issues

Summary (continued)

- New risk-targeted probabilistic ground motions (RTGMs) ...
 - Explicitly & uniformly target 1% probability of collapse in a building's lifetime, ~50 years
 - Consider all points on & spatial variations in shapes of hazard curves
 - Require a generic fragility that depends on RTGM & effectively considers shapes of hazard curves
 - Changes uniform-hazard (2%-in-50yr) ground motions by factor of 0.85-1.15 generally, but as low as 0.70 near New Madrid and Charleston